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Growth of inert-gas bubbles in solids; 
behaviour of non-uniform size distributions 

A L A N  J. M A R K W O R T H  
Metal Science Group, Battelle-Columbus, Columbus, Ohio, USA 

An analytical study of the effects of non-uniform sizes on the growth kinetics of inert-gas 
bubbles in solids is presented. Assuming ideal-gas behaviour and gas-diffusion-controlled 
growth, it is found that for out-of-reactor conditions, the size distribution undergoes pure 
translation in bubble-radius space, the growth kinetics being independent of the details of 
the size-distribution function. On the other hand, for in-reactor growth in fissile materials, 
it is found that kinetic re-solution of fission gas causes any arbitrary subset of the overall 
size distribution to become increasingly "narrow" as bubble growth proceeds, as long as 
all bubbles within the subset are described by the same given kinetic behaviour. 

1. Introduct ion 
The growth of inert-gas bubbles in solids, 
resulting from the precipitation of sparingly 
soluble inert-gas atoms, is a subject that has 
received widespread attention during recent 
years. The focus of much of this attention has 
been upon the behaviour of fission-gas bubbles in 
fissile materials, since these cause nuclear- 
reactor fuel elements to swell macroscopically 
[1 ], leading to premature failure. In addition, it 
has also been found that studies of gas bubbles 
in solids can yield important information regard- 
ing such properties as impurity diffusivities [2], 
surface self diffusivities [3, 4], and surface 
energies [5, 6]. 

One particular area, to which considerable 
theoretical effort has been applied, is the growth 
kinetics of gas bubbles from super-saturated 
solution, both under in-reactor conditions [7, 8] 
and during postirradiation heat-treatment [9-11 ]. 
Of course, in-reactor bubble growth is complica- 
ted by such effects as "kinetic re-solution" of the 
gas [12, 13] which results from the disruptive 
influence of energetic fission fragments, as well 
as the directed migration of bubbles in, say, a 
temperature gradient [14]. 

A simplification that is often made in analyses 
of bubble growth [8-10], is that the size distribu- 
tion of bubbles is uniform, an assumption which 
is often not physically realistic. Since size- 
distribution effects can potentially exert a strong 
influence on bubble-growth kinetics, we shall 
here examine, from an analytical point of view, 
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a number of the consequences, upon bubble 
behaviour, resulting from the assumption of a 
non-uniform size distribution. In particular, for 
out-of-reactor growth (e.g., corresponding to the 
growth of fission-gas bubbles during postirradia- 
tion heat-treatment), effects of non-uniform 
sizes on growth kinetics will be considered, 
whereas for in-reactor growth, the influence of 
kinetic re-solution upon the "shape" of the size 
distribution will be evaluated. 

The basic assumptions we shall make 
regarding various other properties of the system 
will be essentially the same as those used else- 
where [8, 10, 11], that is: (1) The bubbles are 
spherical, intragranular, and stationary (in 
co-ordinate space). (2) The bubble system is 
disperse, such that each bubble can be regarded 
as being situated at the centre of a spherically 
symmetric concentration field of dissolved gas 
[15]. (3) Gas diffusion occurs under quasi- 
stationary conditions. (4) The equilibrium 
solubility of the gas in the solid is zero. In 
addition, we shall assume that the bubbles are 
sufficiently large such that the gas they contain 
behaves ideally. (We note that some size- 
distribution effects, for very small bubbles, have 
been considered elsewhere [11].) Then, if the 
supply of  vacancies is rapid enough to maintain 
the gas pressure virtually equal to the surface 
tension restraint (in other words, assuming gas- 
diffusion-controlled growth kinetics) the radius 
R of a gas bubble is related to the number N of 
gas atoms it contains through the expression 
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8~r yR2/3 = N k T ,  (1) 
where y is the surface tension of the solid 
(assumed to be independent of crystallographic 
direction), k the Boltzmann constant, and T the 
absolute temperature. 

These assumptions yield an analytically 
tractable problem, the solution of which 
describes some important aspects of size- 
distribution phenomena, aspects which can, 
however, be quantitatively evaluated without 
requiring detailed knowledge of the "shape" of 
the distribution in bubble-radius space. 

2. Out-of-reactor bubble growth 
In order to facilitate our discussion of the growth 
kinetics of gas bubbles during heat-treatment, for 
which the total concentration of gas in the solid, 
m, remains essentially constant, we shall consider 
only times for which bubble nucleation is 
complete, so that the total concentration of 
bubbles, n, is invariant in time. Equating m to the 
sum of the average concentration of dissolved 
gas, C, plus the instantaneous gas content of the 
bubbles, we obtain, using Equation 1, 

m = C + 3-k-T RZf (R ,  t) d R ,  (2) 

where f ( R ,  t) is the bubble size-distribution 
function, defined such that f ( R ,  t ) d R  is the 
concentration of bubbles, at time t, with radii 
within the incremental range dR measured about 
R. Now, from our assumptions regarding gas 
diffusion to bubbles, it follows that 

dN/dt  = 4rrDRC,  (3) 
where D is the diffusion coefficient for gas atoms 
in the solid. Combining Equations 1 and 3, we 
find that the "velocity" of a bubble, vR, in 
bubble-radius space, is given by 

vR = (3kTDC)/ (4y) .  (4) 

Clearly, vR is free from any explicit dependence 
upon R. This implies that all bubbles are 
instantaneously changing in size at the same rate 
(a result which is not valid for very small bubbles 
[11 ]). Consequently, if one were to observe the 
growth kinetics from within the bubble-radius 
space, he would see the size distribution under- 
going pure translation to larger radii, with no 
simultaneous change of "shape" occurring. From 
another viewpoint, if the observer were to move 
along the bubble-radius axis at the time- 
dependent rate indicated by Equation 4, the 
bubble distribution would appear, to him, to be 
stationary. 
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Using the brackets < ) to denote an average 
value with respect to f ( R ,  t), it follows, for 
example, that 

and hence, from Equations 2, 4, and 5, that 

4y d ( R )  8rr yn 
m - 3kTD dt + ~ (R~)"  (6) 

Now, the variance of the bubble size distribution, 
F, is given by 

/ z ~ ( ( R -  (R)) 2) = (R z ) -  (R) 2, (7) 

and it follows that/z  is a time invariant, since VR 
is independent of R. Equations 6 and 7 can be 
combined to yield 

8 w y n / z ~ _  4y d(R)  8~ryn 
m 1 -3-m-kT ] 3kTD d-----~ -k ~ ( R )  2" 

. . . . .  ( 8 )  

We observe, from Equation 8, that the variation 
of <R) with time is independent of any explicit 
functional form forf(R,  t), depending only upon 
certain integral properties of the distribution 
function, namely, n, F, and of course, the value 
of the mean radius (R)0 at some reference time, 
which we choose arbitrarily to be t = 0. Of 
course, the values of n, /x, and <R)0 are deter- 
mined during the interval prior to t = 0, during 
which the bubble system is being formed. 

Equation 8 can be considerably simplified if 
expressed in terms of the following dimensionless 
quantities: 

8 ~ r ~ t .  ~ 
~ 1 3mkT  ] ' 

[8,, yn~ 1'2 
p --~ <R> \ 3 m k r ]  

( 3~ rnkTnD21~t~ 
r ~ t 2y ] ' 

in which case we obtain 

dp p2 ~2 
dr  + = " (9) 

Equation 9 can be easily integrated, subject to 
the condition p(r = 0) = Po where, of course, 

[8w yn) 1/2 
P0 ~ \ 3-m--if-T, (R)o" 

We thus find that 
p = ~: tanh [~r + tanh -1 (Po/~:)] �9 (10) 

The special case corresponding to P0 = 0 and 
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= 1 (i.e., a uniform size distribution with zero 
initial mean radius) has been treated elsewhere 
[9, 10]. One can also use Equation 4 to show that 

C = mdp/d-c 

and differentiation of Equation 10 thus gives 

C = m~ :2 sech 2 [~:~- + tanh -~ (P0/~)] �9 (11) 

Equations 10 and 11 describe the temporal 
behaviour of the mean bubble radius and the 
average concentration of gas dissolved in the 
solid in terms of the size distribution parameters, 
n, F,  and (R)o. 

It should be noted from the definitions of s e 
and P0 that 0 < ~: _< 1 and ~ >_ P0. In addition, 
if Po = 0, then ~: = 1. 

The variation of  both p and C with ~- are 
illustrated in Fig. 1 for selected values of  ~ and 
for the special case P0 = 0.3. The tendency of the 
mean radius to "saturate" as C approaches zero 
can clearly be seen. Note also that the effect of 
decreasing the magnitude of ~ (equivalent to 
increasing F), for given P0, is to cause the mean 
radius to saturate at a smaller value. 
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Figure ] Variation of p (solid curves) and C/m (dashe_ d 
c u r v e s )  w i t h  "r f o r  P0 = 0 .3 ,  w i t h  ~ = 1.0,  ~:2 = ~ / 0 . 7 ,  

~3 = ~/0.4. 

One can now easily describe the variation with 
time of a given bubble within the distribution. 
Let us thus consider a bubble having instan- 
taneous radius R(t) .  It follows from Equation 4 
that 

R( t )  - R(O) = ( R )  - (R >o ,  

where (R)  is measured at the instant t. Therefore, 

{ 3 m k r l l / 2  
R( t )  = R(O) - ( R ) o  + \87r 7n]  P '  

where, of course, p is given by Equation 10. In 
particular, we note that R( t )  asymptotically 
approaches a limiting value, Rf, given by 

[{3mkT t ]'/~ 
R~ = R(0)  - <R)o  + [ k s - - ~ r ~ / -  ~ " 

Hence, on the basis of  this model, the level at 
which a given bubble radius saturates depends 
only upon a limited number of size-distribution 
parameters, i.e., the initial bubble radius, the 
initial mean radius, the variance of the size 
distribution, and the bubble concentration. 

3. I n - r e a c t o r  b u b b l e  g r o w t h  

As we have noted, a physically realistic descrip- 
tion of the in-reactor behaviour of bubbles must 
include such phenomena as bubble migration 
and kinetic re-solution, although we shall limit 
our discussion here to the effect of  kinetic 
re-solution, and continue to assume that the 
bubbles are stationary. One useful, albeit 
phenomenological, means for describing re- 
solution is through the use of  a parameter b, 
defined as the probability per unit time that a 
gas atom be re-injected, from a bubble, back into 
solution. Hence Equation 3 must be generalized 
to 

d N / d t  = 4~r D R C  - b X ,  (12) 
and the combination of Equations 1 and 12 
yields 

3k  T D C  bR  
v~ = 4 7  - ~ -  �9 (13)  

The fact that v• now depends explicitly upon R 
implies that the size-distribution function does 
indeed undergo a simultaneous change of 
"shape" as it translates to larger radii. Our 
discussion here will be limited to analysing some 
aspects of this shape change. To this end, we 
describe the temporal behaviour of the ith central 
moment, a~(t), which we define as 

cry(t) ~ ((R - ( R ) ) i ) ,  (14) 

where, in the cases of interest, i is some positive 
integer. Note, for example, that cr=(t) is just the 
variance /z(t). If one differentiates Equation 14 
with respect to time, he obtains 
d ~ ( t ) / d t  = i ( (R  - ( R ) )  ~-1 (vR - d ( R ) / d t ) ) .  

. . . . .  (15) 
Then, combining Equations 13 and 15, 

dcri(t)/dt = - ibex(t)~2, 

from which one finds that 

~(t)  = e~(0)exp(-  ib t /2 ) .  (16) 
We see, from Equation 16, that the size distribu- 
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tion tends to become increasingly "narrow" as 
time progresses. 

In particular, setting i = 2, 

F(t) = F(0) e x p ( -  b t ) ,  

so that the variance decreases exponentially with 
time, the "time constant" being b -1. (It is helpful 
here to note that the square root of the variance, 
which is the standard deviation, is simply a 
measure of the width of the size distribution in 
bubble-radius space.) In addition, the coefficient 
of skewness, S(t) ,  is a dimensionless quantity 
which is a measure of the asymmetry of the size 
distribution, and is defined as 

S(t) =_ a3(t)/~23/2 (t), 
in which case, Equation 16 can be used to show 
that S(t )  = S(0); in other words, the coefficient 
of skewness is a time invariant, unaffected by 
kinetic re-solution. 

Two important features of the analysis leading 
to Equation 16 need to be emphasized. First, the 
analysis is independent of the functional form of 
the size-distribution function. Second, unlike the 
analysis leading to Equations 10 and 11, nowhere 
was it necessary to demand that the brackets ( ) 
must necessarily include an average over the 
overall size distribution. Indeed, the analysis 
applies equally well to any arbitrary subset of the 
overall distribution, even if bubbles outside the 
subset are simultaneously being nucleated and/or 
annihilated. One need only require (a) that 
Equation 13 must apply to each of the bubbles 
under observation, and (b) that the observations 
must always cover the same set of bubbles. 

The importance of requirement (a) lies in the 
fact that in a "real" material, no single growth- 
rate equation is likely to be applicable to all the 

bubbles. (A good example of this fact is the 
manner in which bubbles on grain boundaries 
undergo different growth kinetics relative to 
bubbles within grains [16].) Consequently, for 
"real" materials, the overall size distribution, 
comprised of bubbles subjected to differing 
growth kinetics, may vary in an extremely 
complex manner. 
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